17 Aug 2016

Last few months were quite busy for me.

On the good side: I solved 2 tracks of Labyrenth CTF - Windows and Documents. Unfortunately they still haven't published the Honor Roll, so I have no clue if I placed 1st, 2nd or 44th..

On the bad side: there are lots of changes happening in my office. I don't mind changes per se but the uncertainty of the future of the company.. Well, that's not great.

So, I'm leaving for summer vacation. I'll spend almost 4 weeks on islands with very spotty mobile coverage and almost certainly without Internet access. Will be back in mid-September, relaxed and ready to do some serious reversing again.

Have fun and talk to you all later!

01 Aug 2016

In part 1 of the tutorial, I explained how badly initialized PRNG causes a serious problems and allows us to find the private key. In this part of tutorial, I'll show how to use another weakness in crackme to find private key without using bruteforce.

### Looking deeper in the keygenme

If you analyze serial check in more details, you'll notice part of code that processes blacklisted names and keys:

It looks like we have 2 blacklisted names & corresponding serials. We can quickly patch crackme and verify that these names and serials really work.

But did you also notice that those serials look a lot alike? That's weird.. Let's take a closer look at them:

First part of the serial is exactly the same! Let's go back to ElGamal basics and think a bit.

### Revisiting ElGamal signing algorithm

I'm sure you already remember the algorithm from my previous blog post. But here it is again.. smile

To sign a message M, one would:

• Make a hash of message, H(M). In this crackme, it's SHA1 of the username
• Generate a random number K where K<P-1
• Calculate R=G^K (mod P)
• Calculate S=(H(M)-RX)*K^(-1) (mod P-1)
• The signature will be the pair C(R,S).

So, in our case, R is always the same. G and P are hardcoded in the crackme. That means.. K is always the same. And that doesn't sound right! smile

Quick look in Wikipedia confirms that it's a really bad idea:

The signer must be careful to choose a different k uniformly at random for each signature and to be certain that k, or even partial information about k, is not leaked. Otherwise, an attacker may be able to deduce the secret key x with reduced difficulty, perhaps enough to allow a practical attack. In particular, if two messages are sent using the same value of k and the same key, then an attacker can compute x directly.[1]

The problem of reusing k and the attack itself is explained in Stinson's "Cryptography Theory And Practice", pages 290-291. Unfortunately, normal person has no chance to understand that "explanation".

Few Google searches later I found 2 writeups from Boston Key Party CTF 2015 which were slightly better:

So, let's try to get something useful out of them.

### Reused K and recovering private key

As I said earlier, cryptography is a dark magic - if you don't spend years studying it, you can't understand it. So, I just took the code from those CTF writeups and added few more comments to it. And no, I still don't know why it works. smile

### Conclusion

Wise man once said:

Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information upon it.

You don't need to be a crypto wizard to solve crackmes - you just need to know where to find the necessary information. But if you're implementing cryptography in your software, better ask someone who understands those things.

Have fun!